
BEE 271 Spring 2017
Homework 4 answers

Please answer the following questions. Each is worth 8 points.

1. Write a Verilog module using a casex statement that takes a 4-bit value as input and
outputs the number of leading 1’s, e.g., 0111  0, 1011  1, 1100  2, etc.

module CountLeadingOnes(input [3:0] v, output reg [2:0] p);
 always @(*)
 casex (v)
 4'b0xxx: p = 0;
 4'b10xx: p = 1;
 4'b110x: p = 2;
 4'b1110: p = 3;
 4'b1111: p = 4;
 endcase
endmodule

2. Create a module in Verilog that adds a 4-bit unsigned binary number to an 8-bit
unsigned binary number, producing a 10-bit unsigned result using the + operator.

module AddU(input [3:0] A, input [7:0] B, output [9:0] sum);

 // Verilog pads high-order bits with zeros.

 assign sum = A + B;
endmodule

3. Create a module in Verilog that adds a 4-bit signed binary number to an 8-bit
unsigned binary number, producing a 10-bit signed result using the + operator.

Two possible approaches using explicit sign extension or the new signed keyword:

module AddS1(input [3:0] A, input [7:0] B, output [9:0] sum);

 // Sign-extend A, replicating the sign bit A[3] through 6
 // positions.

 assign sum = { { 6{ A[3] } }, A } + B;
endmodule

module AddS2(input signed [3:0] A, input [7:0] B,
 output signed [9:0] sum);

 // Using the signed keyword.

 assign sum = A + B;
endmodule

4. What is Shannon’s expansion? What is a cofactor?

If f = f(x1, x2, x3, …, xn) then f = x1’ fx1’ + x1 fx1

where fx1’ and fx1 are cofactors of f with respect to x1’ and x1 such that

fx1’ = f(0, x2, x3, …, xn) and fx1 = f(1, x2, x3, …, xn)

5. Implement F = A B C’ + A B’ D’ using a 16:1 multiplexer.

Plotting this on a Karnaugh map, we can see that F = Σ m(8, 10, 12, 13), meaning this
function can be implemented by tying those inputs to 1 and the others to 0.

 cd
 00 01 11 10
ab 00

 01

 11 1 1

 10 1

1

6. Implement your 16:1 multiplexer solution to F = A B C’ + A B’ D’ as directly as you
can in Verilog using a case statement and the concatenation operator.

module solution(input A, B, C, D, output reg f);

 always @(*)
 case ({ A, B, C, D })
 8, 10, 12, 13: f = 1;
 default: f = 0;
 endcase

endmodule

A B C’

A B’ D’

ABCD

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0

1
F A C’ D’

hazard

7. Use Shannon’s expansion to implement F = A B C’ + A B’ D’ using a 2:1 multiplexer,
two NOR gates and one inverters. Show your steps.

F = A B C’ + A B’ D’

FA’ = 0

FA = B C’ + B’ D’

FB’ = A D’ = (A’ + D)’

FB = A C’ = (A’ + C)’

FC’ = A B + A B’ D’

FC = A B’ D’

FD’ = A B C’ + A B’

FD = A B C’

8. Draw a schematic that implements F = A B C’ + A B’ D’ using NAND gates and
inverters. Will it have a hazard? If there is a hazard, will it be a static 1 or a static
0 hazard and how could you fix the formula and your circuit to eliminate the hazard?

Yes, it has a static 1 hazard, shown on the Karnaugh map in problem 5. To fix it,
add a A C’ D’ term to join the two adjacent 1’s at 1000 and 1100 into a single
implicant.

F

0

1

B

D

C

A

D

C

B

A

F

9. Implement F = (A + B’ + D’) (A’ + B’ + C’) using a 16:1 multiplexer.

Plotting this on a Karnaugh map, we can see that F = Π M(5, 7, 14, 15), meaning
this function can be implemented by tying those inputs to 0 and the others to 1.

10. Use Shannon’s expansion to implement F = (A + B’ + D’) (A’ + B’ + C’) using a
2:1 multiplexer and two NAND gates. Show your steps.

F = (A + B’ + D’) (A’ + B’ + C’)

FA’ = B’ + D’ = (B D)’

FA = B’ + C’ = (B C)’

FB’ = 1

FB = (A + D’) (A’ + C’)

FC’ = (A + B’ + D’) (A’ + B’)

FC = (A + B’ + D’)

FD’ = (A + B’) (A’ + B’ + C’)

FD = A’ + B’ + C’

 cd
 00 01 11 10
ab 00

 01 0 0
 11

0 0

 10

ABCD

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1

0

F
A’ + B’ + C’

A + B’ + D’

B’ + C’ + D’
hazard

F

A

F

0

1

B

D

C

11. Use Shannon’s expansion to implement F = (A + B’ + D’) (A’ + B’ + C’) using a
4:1 multiplexer and two inverters. Show your steps.

To solve this, you’ll need to try all the possibilities of two inputs at a time as
selection lines to the 4:1 multiplexer until you find the right one. Only AB is the
right solution.

F = (A + B’ + D’) (A’ + B’ + C’)

FA’ = B’ + D’ = (B D)’

FA = B’ + C’ = (B C)’

FA’B’ = 1

FA’B = D’

FAB’ = 1

FAB = C’

FA’C’ = (B D)’

FA’C = 0

FAC’ = 1

FAC = B’

FA’D’ = 1

FA’D = B’

FAD’ = (B C)’

FAD = (B C)’

FB’ = 1

FB = (A + D’) (A’ + C’)

FB’C’ = 1

FB’C = 1

FBC’ = A + D’

FB’C = (A + D’) A’ = A’ D’

FB’D’ = A’ + C’

FB’D = 1

FBD’ = A’ + C’

FB’D = A (A’ + C’) = A C’

A B

F D

C

0

1

2

3

1

FC’ = A + B’ + D’

FC = (A + B’ + D’) (A’ + B’)

FC’D = A + B’

FC’D’ = 1

FCD = A + B’ + D’

FCD’ = 1

12. Draw a schematic that implements F = (A + B’ + D’) (A’ + B’ + C’) using NOR
gates and inverters. Will it have a hazard? If there is a hazard, will it be a static 1
or a static 0 hazard and how could you fix the formula and your circuit to eliminate
the hazard?

Yes, it has a static 0 hazard, shown on the Karnaugh map in problem 9. To fix it,
add a (B’ + C’ + D’) term to join the two adjacent 0’s at 0111 and 1111 into a
single implicant.

A

D

B

C

F

